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1. INTRODUCTION

An excellent survey of the stability of columns subjected to follower forces can be seen in
references [1, 2]. During the 1970s, "nite element formulations were developed to study this
problem based on energy method [3, 4] and Galerkin method [5, 6]. The stability
boundaries of columns subjected to an intermediate follower force have been presented in
reference [7]. In this study, the column is assumed as a slender one and the e!ects of shear
deformation and rotary inertia are not considered. However, Euler buckling studies of shear
#exible columns with intermediate load and with overhang are presented in references
[8, 9]. Consideration of shear deformation and rotary inertia is necessary in the case of
columns subjected to intermediate follower forces as the load comes closer to the "xed end
where the immovability condition of axial displacement is imposed. This aspect is well
established in the study of one of the authors while dealing with the Euler-type intermediate
load [8].
The aim of the present paper is to study the e!ect of shear deformation and rotary inertia

on the stability of cantilever columns subjected to an intermediate concentrated follower
force. This aspect of intermediate follower force is not studied till now, to the best of the
author's knowledge; even though the stability behaviour of short cantilever columns with
a tip concentrated follower force is available in reference [10].
The formulation of the present problem is brie#y discussed in the next section followed by

numerical results, discussion and conclusions.

2. FINITE ELEMENT FORMULATION

A uniform cantilever column of length ¸ subjected to a concentrated intermediate
follower force P is shown in Figure 1. The column is idealized into a number of "nite
elements, the length of a typical "nite element being l. The various energies/work done,
considering shear deformation and rotary inertia, for the problem considered here, are
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. A uniform cantilever column subjected to an intermediate follower force.

1126 LETTERS TO THE EDITOR
given by

;"

EI

2 �
�

�

(�)� dx#

kGA

2 �
�

�

(w�#�)� dx, (1)

¹"

�A��

2 �
�

�

(w)� dx#

�I��

2 �
�

�

(�)� dx, (2)

=
�
"

P

2 �
�

�

(w�)� dx, =
��

"!Pw �(a)w(a), (3, 4)

where,; is the strain energy, ¹ is the kinetic energy,=
�
is the conservative part of the work

done by P, =
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is the non-conservative part of the work done by P, E is the Young's
modulus, I is the area moment of inertia, k is the shear correction factor (taken as 5/6), G is
the shear modulus, A is the area of cross-section, � is the mass density, w is the lateral
displacement, � is the section rotation ("�!w�, � being the shear rotation ), a is the global
axial co-ordinate X where the concentrated follower force is applied and ( )� denotes the
di!erentiation with respect to the element axial co-ordinate x.
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and applying the standard procedure [11], we obtain the element matrices with respect to
the degrees of freedom w
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ends of the beam element) as
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where [k] is the element elastic sti!ness matrix, [m] is the element mass matrix, [g
�
] is the

conservative part of the element geometric matrix and [g
��
] is the non-conservative part of

the element geometric sti!ness matrix. It is to be noted here that in the case of an
intermediate load, [g

�
] is a null matrix for unloaded elements and [g

��
] is the only non-zero

matrix where an element is "rst loaded with an intermediate follower force.
After the usual assembly procedure, the governing equation of motion for the stability of

the column subjected to a follower force is written as

[K]��	![G
�
]��	![G

��
]��	!��[M]��	"0, (11)

where [K], [G
�
], [G

��
], [M] and ��	 are the assembled elastic sti!ness matrix, conservative

part of the geometric and non-conservative part of the geometric sti!ness matrices, mass
matrix and eigenvector respectively.
Equation (11) can be solved to obtain the frequencies� with the variation of intermediate

follower force P and the critical load P
��
is that load where two frequencies coalesce.

3. NUMERICAL RESULTS AND DISCUSSION

Figure 1 shows a uniform cantilever column with an intermediate follower force. Using
the formulation given in the previous section, the critical load parameters 


��
("P

��
a�/��EI)

where P
��
is the critical load which is obtained for various ¸/r and a/¸ ratios. The "nite

element idealization, 16 equal length elements above the load point and 16 equal length
elements below the load point are found to give converged results up to four signi"cant
"gures for all the a/¸ values considered in the present study. For a/¸"1)0, i.e., for the tip
concentrated follower force, 16 equal length elements give the same accuracy mentioned
above and for this case, the present results match very well with those given in reference
[10].
The values of critical load parameter 


��
, coalescence frequency�

�
("�A��

�
¸�/EI, where

�
�
is coalescence frequency) and the coalescing vibration modes are given in Table 1 for

various values of ¸/r and a/¸. ¸/r"1000 represents the results for a slender column
without the e!ects of shear and rotary inertia. For ¸/r"100, the e!ects of shear and rotary
inertia become predominant, for example, for a/¸"0)2. This shows that even for
a relatively slender column, the position of the intermediate follower force is important.
In other words, what matters for the present problem is not the global slenderness ratio of

the column (¸/r"100) but the local slenderness ratio (a/r"20). The variation of 

��
for

¸/r"1000 and 100 is "rst decreasing and then increasing as a/¸ decreases. This sort of



TABLE 1

Buckling load parameter 

��
and the coalescence frequency parameter �

�
for di+erent ¸/r of

a cantilever column subjected to an intermediate follower force

¸/r a/¸ 

��

�
�

Coalescing modes

1000 1)0 2)032 121)3 1 and 2
0)8 1)301 114)5 1 and 2
0)6 0)9347 108)5 1 and 2
0)4 1)039 144)5 1 and 2
0)2 1)214 5155 3 and 4

100 1)0 2)010 119)5 1 and 2
0)8 1)290 113)5 1 and 2
0)6 0)9257 107)2 1 and 2
0)4 1)014 140)9 1 and 2
0)2 1)159 1035 3 and 4

50 1)0 1)949 114)4 1 and 2
0)8 1)256 109)1 1 and 2
0)6 0)8996 103.8 1 and 2
0)4 0)9469 132)9 1 and 2
0)2 0)8936 1835 2 and 3

25 1)0 1)740 97)49 1 and 2
0)8 1)136 94)01 1 and 2
0)6 0)8079 90)50 1 and 2
0)4 0)7492 107)0 1 and 2
0)2 0)4676 954)3 2 and 3

10 1)0 1)017 46)62 1 and 2
0)8 0)6849 46)16 1 and 2
0)6 0)4691 45)06 1 and 2
0)4 0)3079 44)40 1 and 2
0)2 0)1170 116)6 2 and 3

TABLE 2

Buckling load parameter 

��
for an intermediate follower force and conservative force

for ¸/r"25

a/¸ 

��
for follower force,
Present study



��
for conservative force,

reference [8]

1)0 1)7400 0)2467
0)8 1)1360 0)2452
0)6 0)8079 0)2417
0)4 0)7492 0)2324
0)2 0)4676 0)1938
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trend is not unexpected in the case of stability of columns subjected to follower forces and is
shown in reference [6], while studying the stability behaviour of spring-hinged cantilever
columns. The trend for �

�
is also similar. It is interesting to note that coalescing modes of

vibration are 1 and 2 up to a/¸"0)4 and for a/¸"0)2, these are 3 and 4.
For a/r"50, the trend is increasing with decreasing a/¸, whereas the trend in �

�
is as

discussed for ¸/r"1000 and 100. However, the coalescing vibration modes for a/¸"0)2
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are 2 and 3 instead of 3 and 4. 

��
monotonically decreases with decreasing a/¸ for ¸/r"25

and 10, but the trend in �
�
is as discussed for ¸/r"50 and the coalescing vibration modes

are 2 and 3 for these cases of ¸/r for a/¸"0)2.
The e!ect of shear deformation and rotary inertia is highly predominant in the case of an

intermediate follower force when compared to its counterpart of an intermediate
conservative (Euler) force. This fact is shown by comparing the present result with those of
reference [8]. In Table 2, the comparison is given. For a typical ¸/r, say 25 the 


��
for

a/¸"1)0 and 0)2 di!er by 272% in the case of a follower force, whereas the di!erence in


��
(with the same de"nition) is 27)33% in the case of conservative force.

4. CONCLUDING REMARKS

The stability behaviour of uniform short cantilever columns subjected to an intermediate
concentrated follower force (Beck type) is investigated in this paper using the versatile "nite
element method. Obviously for this problem, the instability is of #utter type and hence the
stability parameter can be obtained by applying dynamic criterion. Since short columns are
considered in this paper, the e!ects of shear deformation and rotary inertia is included in the
formulation. Numerical results are obtained for various slenderness ratios of the column
and for several positions of the intermediate follower force. The numerical results reveal
trends that are speci"c to non-conservative problem. The coalescing modes of vibration
when the follower force is very near to the support are seen to be higher modes. The e!ects
of shear deformation and rotary inertia are found to be signi"cantly higher in the case of
the intermediate follower force when compared to a similar problem with intermediate
conservative force (Euler type).
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